離心就是利用離心機(jī)轉(zhuǎn)子高速旋轉(zhuǎn)產(chǎn)生的巨大的離心力,加快液體中顆粒的沉降速度,把樣品中不同沉降系數(shù)和浮力密度的物質(zhì)分離開(kāi)。所以需要利用離心機(jī)產(chǎn)生巨大的離心力,才能迫使這些微粒克服擴(kuò)散產(chǎn)生沉降運(yùn)動(dòng)。
當(dāng)含有細(xì)小顆粒的懸浮液靜置不動(dòng)時(shí),由于重力場(chǎng)的作用使得懸浮的顆粒逐漸下沉。粒子越重,下沉越快,反之密度比液體小的粒子就會(huì)上浮。微粒在重力場(chǎng)下移動(dòng)的速度與微粒的大小、形態(tài)和密度有關(guān),并且又與重力場(chǎng)的強(qiáng)度及液體的粘度有關(guān)。象紅血球大小的顆粒,直徑為數(shù)微米,就可以在通常重力作用下觀察到它們的沉降過(guò)程。
此外,物質(zhì)在介質(zhì)中沉降時(shí)還伴隨有擴(kuò)散現(xiàn)象。擴(kuò)散與物質(zhì)的質(zhì)量成反比,顆粒越小擴(kuò)散越嚴(yán)重。而沉降是相對(duì)的,有條件的,要受到外力才能運(yùn)動(dòng)。沉降與物體重量成正比,顆粒越大沉降越快。對(duì)小于幾微米的微粒如病毒或蛋白質(zhì)等,它們?cè)谌芤褐谐赡z體或半膠體狀態(tài),僅僅利用重力是不可能觀察到沉降過(guò)程的。因?yàn)轭w粒越小沉降越慢,而擴(kuò)散現(xiàn)象則越嚴(yán)重。所以需要利用離心機(jī)產(chǎn)生巨大的離心力,才能迫使這些微??朔U(kuò)散產(chǎn)生沉降運(yùn)動(dòng)。
離心技術(shù)在生物科學(xué),特別是在生物化學(xué)和分子生物學(xué)研究領(lǐng)域,已得到十分廣泛的應(yīng)用,每個(gè)生物化學(xué)和分子生物學(xué)實(shí)驗(yàn)室都要裝備多種型式的離心機(jī)。離心技術(shù)主要用于各種生物樣品的分離和制備,生物樣品懸浮液在高速旋轉(zhuǎn)下,由于巨大的離心力作用,使懸浮的微小顆粒(細(xì)胞器、生物大分子的沉淀等)以一定的速度沉降,從而與溶液得以分離,而沉降速度取決于顆粒的質(zhì)量、大小和密度。
基本原理:
當(dāng)一個(gè)粒子(生物大分子或細(xì)胞器)在高速旋轉(zhuǎn)下受到離心力作用時(shí),此離心力“F”由下式定義,即:
F = m&S226;a = m&S226;ω2 r a — 粒子旋轉(zhuǎn)的加速度, m — 沉降粒子的有效質(zhì)量,ω—粒子旋轉(zhuǎn)的角速度, r—粒子的旋轉(zhuǎn)半徑( cm )。
通常離心力常用地球引力的倍數(shù)來(lái)表示,因而稱(chēng)為相對(duì)離心力 “ RCF ”?;蛘哂脭?shù)字乘“g”來(lái)表示,例如25000×g,則表示相對(duì)離心力為25000。相對(duì)離心力是指在離心場(chǎng)中,作用于顆粒的離心力相當(dāng)于地球重力的倍數(shù),單位是重力加速度“g” (980cm/sec2),此時(shí)“RCF”相對(duì)離心力可用下式計(jì)算:
RCF = 1.1∴19×10-5×(rpm)2 r
( rpm — revolutions per minute每分鐘轉(zhuǎn)數(shù),r/min )
由上式可見(jiàn),只要給出旋轉(zhuǎn)半徑r,則RCF和rpm之間可以相互換算。但是由于轉(zhuǎn)頭的形狀及結(jié)構(gòu)的差異,使每臺(tái)離心機(jī)的離心管,從管口至管底的各點(diǎn)與旋轉(zhuǎn)軸之間的距離是不一樣的,所以在計(jì)算是規(guī)定旋轉(zhuǎn)半徑均用平均半徑“ra v”代替:
ra v=( r min+rmax) / 2
一般情況下,低速離心時(shí)常以轉(zhuǎn)速“rpm”來(lái)表示,高速離心時(shí)則以“g” 表示。計(jì)算顆粒的相對(duì)離心力時(shí),應(yīng)注意離心管與旋轉(zhuǎn)軸中心的距離“r”不同,即沉降顆粒在離心管中所處位置不同,則所受離心力也不同。因此在報(bào)告超離心條件時(shí),通??偸怯玫匦囊Φ谋稊?shù)“×g”代替每分鐘轉(zhuǎn)數(shù)“rpm”,因?yàn)樗梢哉鎸?shí)地反映顆粒在離心管內(nèi)不同位置的離心力及其動(dòng)態(tài)變化。科技文獻(xiàn)中離心力的數(shù)據(jù)通常是指其平均值(RCFa v),即離心管中點(diǎn)的離心力。